
Math Modeling, Week 9

1. Explore the Hopfield network code.

(a) Train the network on the training patterns. Start it in a noisy version of a
training pattern (not 3 or 9) and run it until convergence. Start it again, this
time using clean<0, and run until convergence. What happens, and what does
this tell you about attractors in this kind of network?

Starting with a majority of nodes mismatching a given pattern generally results in
convergence to the opposite of that pattern (1 ↔ −1). This reflects a general
symmetry or sign-invariance of the network dynamics. Formally, if we define
�̃� = −𝑎 and derive the update rule for �̃�, it will be the same as that for 𝑎.

(b) Start the network in pattern 3 or 9 and run to convergence. What’s
happening? Do you think something like this could happen with the patterns
in setuplines.m?

Interference between patterns 3 and 9 causes them to be unstable, and instead
there is a stable pattern that is in a sense between these two trained patterns. Notice
though that this effect depends on contributions from other trained patterns; if the
network is trained only on patterns 3 and 9 then both are stable.

This interference happens because of the large similarity between patterns 3 and 9.
As seen in question 3, interference between two patterns depends on 𝑎𝑖

1𝑎𝑖
2𝑎𝑗

1𝑎𝑗
2,

which can be seen as a measure of pattern overlap. For the patterns in
setuplines.m, pairwise overlap is always 50%. Therefore the interference terms
balance out to zero (or very close; the lack of self-connections breaks the symmetry
slightly), and the patterns don’t interfere with each other.

2. Consider a Hopfield network with 𝒏 units, trained by Hebbian learning on a

single pattern 𝒂𝟏. That is, 𝒂𝒊
𝟏 ∈ {−𝟏,𝟏} for all 𝒊, and the weight between any two

distinct nodes is 𝒘𝒊𝒋 =
𝟏

𝒏
𝒂𝒊
𝟏𝒂𝒋

𝟏, with 𝒘𝒊𝒊 = 𝟎. Prove that 𝒂𝟏 is a stable state (i.e.,

an attractor) of the network.

More specifically: Imagine we put the network in state 𝒂𝟏, by setting the
activation 𝒂𝒋 = 𝒂𝒋

𝟏 for all 𝒋, and we pick any node 𝒊 and update it according to

𝒂𝒊 ← 𝐬𝐢𝐠𝐧(∑ 𝒂𝒋𝒘𝒊𝒋𝒋). Prove that 𝒂𝒊 doesn’t change, i.e. that 𝐬𝐢𝐠𝐧(∑ 𝒂𝒋𝒘𝒊𝒋𝒋) = 𝒂𝒊
𝟏.

Hint: substitute the definition of 𝒘 into the update equation, and use the fact
that 𝒂𝒋𝒂𝒋 = 𝟏 for all 𝒋.

The input to node 𝑖 can be written as ∑ 𝑤𝑖𝑗𝑎𝑗𝑗 = ∑
1

𝑛
𝑎𝑖
1𝑎𝑗

1𝑎𝑗
1

𝑗≠𝑖 =
1

𝑛
∑ 𝑎𝑖

1
𝑗≠𝑖 =

𝑛−1

𝑛
𝑎𝑖
1.

These steps use the facts that (a) 𝑤𝑖𝑗 = 𝑎𝑖
1𝑎𝑗

1 for 𝑖 ≠ 𝑗 and 𝑤𝑖𝑖 = 0, (b) the network is

in state 𝑎1 meaning 𝑎𝑗 = 𝑎𝑗
1, and (c) 𝑎𝑗

1𝑎𝑗
1 = 1 regardless of whether 𝑎𝑗

1 = 1 or

𝑎𝑗
1 = −1. Because sign (

𝑛−1

𝑛
𝑎𝑖
1) = 𝑎𝑖

1, the updating doesn’t change the state of the

network, and therefore 𝑎1 is stable.

http://matt.colorado.edu/teaching/mathmodeling/week9code

3. Now imagine training the network on two patterns, 𝒂𝟏 and 𝒂𝟐, so that
𝒘𝒊𝒋 =

𝟏

𝒏
𝒂𝒊
𝟏𝒂𝒋

𝟏 + 𝟏

𝒏
𝒂𝒊
𝟐𝒂𝒋

𝟐 for all 𝒊 ≠ 𝒋 and 𝒘𝒊𝒊 = 𝟎.

(a) Assume the network is in state 𝒂𝟏. Write an expression for the total input
to any node 𝒊, in terms of 𝒂𝟏 and 𝒂𝟐 (i.e., eliminating 𝒘). Simplify the
expression as much as possible, to separate the interference between 𝒂𝟏 and
𝒂𝟐 from the contribution of 𝒂𝟏 alone (the latter should match what you
derived in question 2).

When the network is in state 𝑎1, the total input to any node 𝑖 is equal to

∑ 𝑤𝑖𝑗𝑎𝑗
𝑗

=∑ (
1

𝑛
𝑎𝑖
1𝑎𝑗

1 +
1

𝑛
𝑎𝑖
2𝑎𝑗

2)𝑎𝑗
1

𝑗≠𝑖

=
1

𝑛
∑ (𝑎𝑖

1 + 𝑎𝑖
2𝑎𝑗

2𝑎𝑗
1)

𝑗≠𝑖

=
𝑛−1

𝑛
𝑎𝑖
1 +

1

𝑛
∑ 𝑎𝑖

2𝑎𝑗
2𝑎𝑗

1

𝑗≠𝑖
.

The first term here is the contribution from 𝑎1 alone (same as in the previous
question), and the second term represents interference between the two patterns.

 (b) Comparing the two terms in the previous answer (interference and
contribution from 𝒂𝟏 alone), try to figure out what would need to happen for
the training patterns not to be stable. That is, how would 𝒂𝟏 and 𝒂𝟐 need to be
related in order for the interference terms to cause a problem?

Understanding the interference might be easier if we rewrite the total input as

(
𝑛−1

𝑛
+

1

𝑛
∑ 𝑎𝑖

1𝑎𝑖
2𝑎𝑗

1𝑎𝑗
2

𝑗≠𝑖
)𝑎𝑖

1.

Pattern 𝑎1 will be stable iff the expression in the parentheses is positive for all 𝑖. The
𝑛−1

𝑛
 term is clearly positive, so the question depends on the 𝑎𝑖

1𝑎𝑖
2𝑎𝑗

1𝑎𝑗
2 terms.

You can think about 𝑎𝑖
1𝑎𝑖

2𝑎𝑗
1𝑎𝑗

2 as a second-order interaction between the patterns, a

“sameness of sameness” relation. First, notice that 𝑎𝑖
𝑘𝑎𝑗

𝑘 equals 1 if nodes 𝑖 and 𝑗

match in pattern 𝑘, and -1 if they mismatch. Therefore, 𝑎𝑖
1𝑎𝑖

2𝑎𝑗
1𝑎𝑗

2 will equal 1 if

nodes 𝑖 and 𝑗 match in both patterns, or if they mismatch in both patterns. Likewise,
𝑎𝑖
1𝑎𝑖

2𝑎𝑗
1𝑎𝑗

2 will equal -1 if nodes 𝑖 and 𝑗 match in one pattern and mismatch in the

other. Thus 𝑎𝑖
1𝑎𝑖

2𝑎𝑗
1𝑎𝑗

2 encodes whether the two patterns agree on whether nodes 𝑖

and 𝑗 should match.

The worst case is that all of the interference terms are negative. This happens when,
for every 𝑗, nodes 𝑖 and 𝑗 match in one pattern and mismatch in the other. Because
there are 𝑛 − 1 interference terms, the total input to node 𝑖 will be

(𝑛−1
𝑛
+ 1

𝑛
∑ (−1)𝑗≠𝑖)𝑎𝑖

1 = 0. The update behavior of 𝑎𝑖 can then be taken to be random.

There are two ways for the interference terms all to be negative, depending on
whether the two patterns match or mismatch on node 𝑖. First assume they match,
𝑎𝑖
1 = 𝑎𝑖

2. Then we must have 𝑎𝑗
1 ≠ 𝑎𝑗

2 for all 𝑗 (other than 𝑖)—that is, the two

patterns disagree everywhere except at node 𝑖. Second, assume that 𝑎𝑖
1 ≠ 𝑎𝑖

2. Then
we must have 𝑎𝑗

1 = 𝑎𝑗
2 for all 𝑗 (other than 𝑖)—that is, the two patterns agree

everywhere except at node 𝑖. In either case, notice that all weights involving 𝑖 will
equal zero: ∀𝑗, 𝑤𝑖𝑗 =

1

𝑛
𝑎𝑖
1𝑎𝑗

1 + 1

𝑛
𝑎𝑖
2𝑎𝑗

2 = 1

𝑛
− 1

𝑛
 or −1

𝑛
+ 1

𝑛
.

In summary, instability can occur only if the two patterns agree on exactly one node
or disagree on exactly one node, and in that case the instability is specific to the
unique node. In fact, we have only semi-stability, because all inputs to that node
equal zero. Therefore the network will randomly oscillate between the two training
patterns (or their antipatterns).

